

Tests salivaires de dépistage : intérêts et limites

Pr. A.-L. Pélissier-Alicot

UF de Toxicologie Médicolégale, Service de Médecine légale, AP-HM, Marseille

- Pour prévenir les risques liés à la consommation de substances psychoactives (SPA)
- Le risque majeur est l'accident (travail/trajet)
- L'accident peut survenir lors d'un usage ponctuel comme d'un usage régulier
- L'accident n'est pas forcément en lien avec une éventuelle conduite addictive
 - Etre sous influence ≠ être addict
- L'accident peut impliquer un salarié, un collaborateur ou un tiers

- Quels sont les postes à risque élevé ?
 - Les postes à haut degré de vigilance (conduite de véhicules, postes de surveillance)
 - Le travail de nuit/posté
 - Le travail isolé

• Les postes à responsabilités élevées (stress, obligation de résultat)

- Quelles sont les composantes de la performance impactées ?
 - La vigilance, ou capacité à détecter des informations brèves et/ou rares au cours d'une situation prolongée
 - L'attention, ou capacité à réagir à des stimuli multiples, avec une fréquence élevée, dans un environnement riche en informations
 - La qualité d'exécution psychomotrice, caractérisée par un délai adapté entre la décision d'exécution et la réalisation effective de la réponse motrice
 - La prise de risque, liée à la composante inhibition-désinhibition

- Quels sont les risques autres que l'accident ?
 - Diminution des performances professionnelles
 - Prise de décisions erronées
 - Stress / violence / harcèlement
 - Absentéisme
 - Dépression

Quelles molécules impliquées ?

- L'alcool
 - Risque accidentogène majeur
 - Effets variables selon la concentration

Stade	Manifestations cliniques		
Infraclinique (0,1 à 0,3 g/L)	Pas de manifestation clinique franche		
Euphorie (0,3 à 0,9 g/L)	Incoordination motrice, levée des inhibitions, baisse de l'attention		
Ebriété (0,9 à 0,2 g/L)	Troubles visuels, augmentation du temps de réaction, euphorie, agressivité, excitation		
Ivresse (1,5 à 3 g/L)	L,5 à 3 g/L) Désorientation temporo-spatiale, démarche ébrieuse, troubles visuels nets, confusion		
Stupeur (2,5 à 4 g/L)	tupeur (2,5 à 4 g/L) Troubles de la conscience, troubles moteurs, vomissements, incontinence, hypoglycémie		
Coma (3,5 à 5 g/L)	Coma calme, hypotonique, hyporéflexique, hypothermie, dépression respiratoire, décès		

Quelles molécules impliquées ?

Le cannabis

- Risque accidentogène majeur surtout si alcool associé
- Distorsion des perceptions temporospatiales
- Troubles de la concentration
- Troubles de la coordination psychomotrice
- Augmentation du temps de réaction
- Troubles de la mémoire à court terme
- Troubles visuels (diplopie, nystagmus, trouble de la vision des couleurs)
- Troubles dissociatifs avec agressivité

Quelles molécules impliquées?

Les psychostimulants

- Cocaïne/crack, amphétamines (ecstasy)
- Agitation psychomotrice
- Sensation d'hypervigilance
- Troubles de la concentration
- Altération du jugement
- Augmentation de la prise de risque
- Dilatation pupillaire avec diminution de l'adaptation à la lumière

Quelles molécules impliquées ?

- Les opioïdes
 - Illicites / stupéfiants de prescription
 - Ralentissement psychomoteur
 - Augmentation du temps de réaction
 - Diminution de la prise de risque
 - Troubles de la coordination
 - Somnolence

Quelles molécules impliquées ?

- Les benzodiazépines
 - Troubles de l'attention
 - Troubles de la mémoire
 - Troubles de la vigilance
 - Perturbations des capacités décisionnelles
 - Altérations des capacités psychomotrices
 - Effets paradoxaux avec excitation, confusion et agressivité
- Autres sédatifs/hypnotiques/anxiolytiques

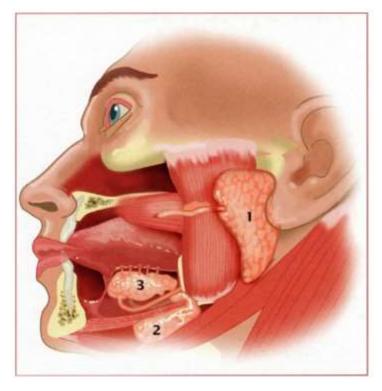
Quelles sont les molécules recherchées ?

- L'alcool → éthylotest, air expiré
- Le cannabis
- Les cocaïniques
- Les opioïdes
- Les stimulants

- Dépistage de « classe »
- Réaction antigène anticorps
- Manque de spécificité

Pourquoi utiliser la salive ?

- Les avantages sont essentiellement liés au mode de prélèvement
 - Facile à réaliser (/sang et urine)
 - Non invasif (/sang)
 - Difficile à adultérer (/urine)
 - Respectueux de l'intimité de la personne (/urine)
 - Acceptable d'un point de vue éthique
- Utilisée en France dans le cadre de la sécurité routière
- Reconnue par la SAMHSA*



Quelles sont les difficultés?

- Variabilité de la composition de la salive
- Difficultés liées au type de prélèvement
- Variabilité des concentrations des différentes molécules
- Risque de contamination passive
- Difficultés de corrélation aux concentrations sanguines

La composition du fluide oral

- Sécrétion de la salive primaire
 - Submandibulaires (2): 65%
 - Parotides (1): 23%
 - Sublinguales (3): 4%
 - Glandes accessoires: 8%
- Production : 0,5 1,5 L/h
- pH
 - Sécrétion de repos : 6,8
 - Sécrétion active: 7,8 8

Aps JKM & Martens LC. Forensic Sci Int 2005;150:119-31

La composition du fluide oral

Composition du fluide oral

- Salive primaire
 - Eau,
 - Electrolytes
 - Enzymes
- Fluide créviculaire
- Cellules épithéliales
- Résidus alimentaires

- Erythrocytes
- Leucocytes
- Bactéries
- Immunoglobulines
- ADN

La composition du fluide oral

- Système nerveux autonome et salivation

 - Lors d'un stress, la stimulation sympathique diminue la sécrétion salivaire
 - Or le prélèvement constitue généralement un facteur de stress

Composition du fluide oral

- Influence des xénobiotiques
 - Un grand nombre de médicaments réduisent le débit salivaire
 - Quelques médicaments augmentent le débit salivaire

• La majorité des stupéfiants réduisent le débit salivaire (cocaïne, cannabis,

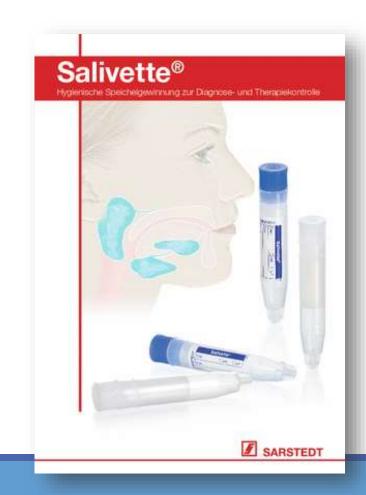
amphétamines, opiacés)

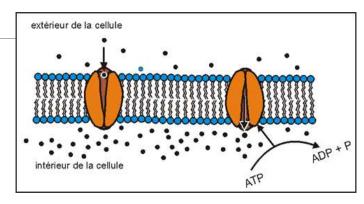
Analgesics	Antihypertensives	Cytotoxics
Antiarrhythmics	Anti nausea agents	Decongestives
Anticonvulsants	Anti-Parkinson agents	Diuretics
Antidepressives	Anti pruretics	Expectorants
Antiemetics	Antipsychotics	Mono-amine-oxidase inhibitors
Antihistamines	Anti spasmodics	Tranquilizers

Aps JKM & Martens LC. Forensic Sci Int 2005;150:119-31

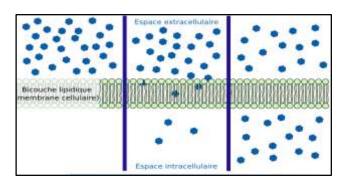
Le mode de recueil de la salive

- Différentes modalités de recueil
 - Recueil de crachats sans stimulation : difficile, notamment en raison du stress
 - Recueil après stimulation acide : jus de citron
 - Recueil après stimulation non acide : téflon, paraffine
 - Recueil après stimulation et adsorption sur coton (Salivette)
 - Ecouvillonnage
 - Conservation dans un tampon




Influence du mode de recueil

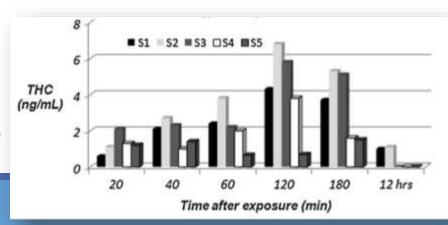
- Recueil après stimulation (acide)
 - Augmente le volume
 - Diminue la concentration (cas de la codéine)
 - Interférence avec les tests immunologiques
 - Adsorption sur les tampons en coton
- Conservation dans un tampon
 - Dilution
- Ecouvillonnage
 - Volume recueilli ??



Variabilité des concentrations

- Différents mécanismes / molécules concernées
 - Filtration
 - Transport actif
 - Diffusion passive
 - Fraction libre non ionisée dans le plasma
 - pH salive
 - Débit salivaire
 - Taille de la molécule
 - pKa
 - Liposolubilité
 - Poids moléculaire
 - configuration spatiale

Transport actif



Diffusion passive

Contamination de la cavité buccale

- Lors de l'absorption par voie orale, nasale ou pulmonaire
 - Augmentation des concentrations salivaires / concentrations plasmatiques
 - Décrit pour le THC, la cocaïne, morphine, 6-MAM, codéine etc.
 - Phénomène à prendre en compte dans l'interprétation
- Atmosphère enfumée
 - Augmentation des concentrations salivaires / concentrations plasmatiques
- Identification des métabolites (cannabis)

Moore C. et al. Forensic Sci Int 2011;212:227-30

Rapport des concentrations

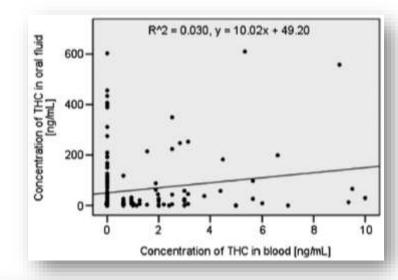
- Les concentrations salivaires sont-elles le reflet des concentrations plasmatiques ?
 - En théorie, les concentrations salivaires ≈ concentrations plasmatiques
 - Après la fin de la phase de contamination orale, les concentrations salivaires devraient être corrélées aux concentrations plasmatiques
 - En pratique, les concentrations salivaires sont plus élevées, surtout pour les molécules basiques, et les cinétiques différentes
 - Corrélation très variable avec les effets cliniques

Research article

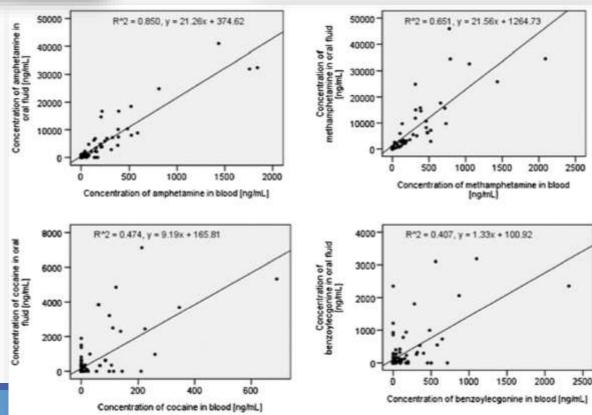
Drug Testing and Analysis

Received: 2 May 2013

Revised: 8 August 2013


Accepted: 8 August 2013

Published online in Wiley Online Library: 9 September 2013


(www.drugtestinganalysis.com) DOI 10.1002/dta.1532

Comparison of drug concentrations between whole blood and oral fluid

Kaarina Langel, * Hallvard Gjerde, Donata Favretto, Pirjo Lillsunde, Elisabeth Leere Øiestad, Santo Davide Ferrara and Alain G. Verstraete

Analyte	Théorique (FO/plasma)	Médiane	Intervalle	Max/min
Amphétamine	2,2	19	3,3 - 78	24
Alprazolam		0,33	0,029 - 2,2	76
Diazepam		0,035	0,020 - 0,34	17
Zopiclone		2,4	1,3 - 4,7	4
Cocaine	3,8	17	1,2 - 63	52
Benzoylecgonine		1,7	0,18 - 31	172
THC	0,1	14	1,0 - 190	190
Morphine	1,2	6,4	0,58 - 37	64
Codeine	3,3	4,8	0,17 - 47	276

Fenêtre de détection dans la salive

Cheveux >> urines >> salive > sang

Molécule	Dose (mg)	Seuil (μg/L)	Fenêtre cde détection (heures)
Amphétamine	10 – 20	10	20 – 50
MDMA	100 PO	100	24
THC	Joint 6,8%	1 - 20	3 – 6
Cocaïne	25 - 42 IV/IN/FU	5 - 10	4 - 12
Benzoylecgonine	25 IV	1	28 - 33 Maximale: 10 jours
6-acétylmorphine	20 héroïne IV	1	0,5 - 8
Morphine	20 IM	1	12 - 24
Codéïne	60 mg PO	2,5	21

Limites du dépistage immunologique

- Dépistage de classe (opiacés / amphétamines)
- Sensibilité correcte (risque de faux négatifs faible)
- Mauvaise spécificité (risque +++ de faux positifs)
- Pas de quantification précise
- Pas de métabolites
- Problème du seuil de dangerosité
- Distinction entre « avoir fait usage » et « être sous influence »

Confirmation après dépistage positif

- Seule une confirmation par une technique chromatographique permettra de déterminer
 - La nature exacte de la molécule
 - Sa concentration
 - Son éventuelle dangerosité
 - Doser les métabolites (éliminer une contamination passive)
- Dans quel milieu biologique effectuer la confirmation ?
 - Le sang?
 - La salive ?

Confirmation après dépistage positif

Confirmation sanguine

- Gold standard en termes d'interprétation
- Nécessité d'un prélèvement sanguin après dépistage positif
- Procédure compliquée en pratique quotidienne

Confirmation salivaire

- Moins précise que le sang en termes d'interprétation
- Analyse à partir du prélèvement salivaire initial (si conservation dans un tampon)
- Stabilité du prélèvement initial ?
- Procédure plus simple que le prélèvement sanguin

Au total

- Le dépistage immunologique dans la salive est facile à réaliser et acceptable pour l'individu
- L'interprétation est complexe car
 - La composition de la salive est variable
 - Les modalités de réalisation du prélèvement peuvent influencer le résultat
 - Le risque de contamination passive est élevé, notamment pour le cannabis
 - La corrélation aux concentrations sanguines n'est pas formellement établie
- Un dépistage ne permet pas d'affirmer que le sujet est sous influence
- Une confirmation est donc nécessaire