Décapage chimique des façades

Dangers des préparations

Ravalement des façades

- Obligation réglementaire décennale, à Paris et dans de nombreuses communes en zones urbaines ou touristiques
- Nécessaire périodiquement pour des raisons esthétiques ou pratiques (étanchéité, par exemple)
- Activité en constante progression
 - En Ile-de-France, 4900 entreprises concernées (20 % des entreprises du bâtiment)
- Entreprises mal préparées à la gestion du risque chimique
 - Entreprises de petite taille
 - < 10 salariés dans 85 % des cas,
 - de 11 à 20 dans 9 %
 - Main d'œuvre peu qualifiée, travailleurs temporaires, soustraitance
 - Chantiers de courte durée, sans coordonnateur de sécurité et de protection de la santé

Ravalement des façades

- Procédure multi-étapes
 - Analyse du support et de son environnement
 - Grille d'évaluation du Centre expérimental de recherche et d'études du BTP
 - Choix des mesures à mettre en œuvre
 - Nettoyage et décapage de la façade
 - Restauration du parement
 - Protection du parement par un hydrofugeant, un vernis ou une peinture
- Présentation ne s'intéresse qu'au décapage
- Décapage des façades peut être :
 - Physique
 - Chimique

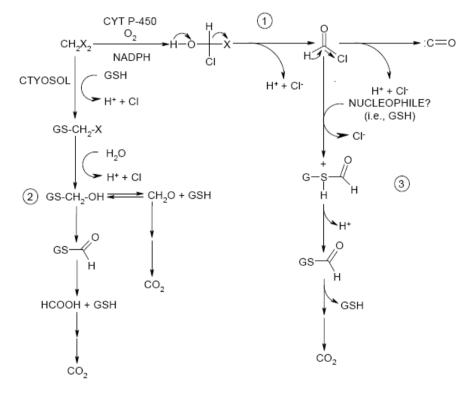
Décapage physique

- Méthodes
 - Décapage mécanique
 - À l'eau sous pression, par sablage, hydrosablage, gommage, hydrogommage, ponçage...
 - Décapage thermique
 - Lance thermique
 - Autres techniques
 - Laser, cryogénie
- Dangers (y compris toxicité) de ces procédés
 - Pas pris en compte dans la présentation
 - Mais réels
 - Irritation respiratoire par les poussières ou les fumées
 - Silicose
 - Inhalation de fibres d'amiante
 - Intoxication oxycarbonée (décapage thermique)
 - Accidents asphyxiques (cryogénie)
 - Saturnisme...

Décapage chimique

- Risque dépend des produits mis en œuvre
- Mais aussi des modalités de mise en œuvre :
 - Poudres, pâtes, gels, liquides
 - Appliqués à la spatule, la brosse, au rouleau ou par pulvérisation
 - Grattage manuel ou mécanisé
 - Rinçage à l'eau à basse ou haute pression
- Présentation ne considère que les dangers liés aux agents chimiques
 - Dépendent des compositions des préparations utilisées

Décapage chimique


- Agents utilisés
 - Solvants organiques
 - Pour le décapage des peintures ou des revêtements de matières plastiques
 - Bases fortes
 - Pour le décapage de pierres, éventuellement pour celui de peintures
 - Acides minéraux
 - Pour le décapage de béton, d'aluminium, d'acier inoxydable

Solvants organiques

- Dichlorométhane
 - Le plus utilisé actuellement
 - Constitue 50-95 % des décapants peintures
 - Substances associées
 - Autres solvants (2-20 %): éthanol, méthanol, toluène, tétrachloréthylène
 - Retardateurs d'évaporation (< 1 %) : cires
 - Tensioactifs
 - Activateurs (5-20 %): acides formique, acétique, chlorhydrique, fluorhydrique; phénols; bases (soude, potasse, ammoniaque, alcanolamines)
 - Épaississants : dérivés de la cellulose

- Toxicité aiguë
 - Irritation +++
 - Dépression du SNC
 - Risque d'accident asphyxique, si confinement
 - Volatil ++
 - Vapeurs plus denses que l'air
 - Production de CO
 - Risque d'accidents anoxiques chez individus prédisposés

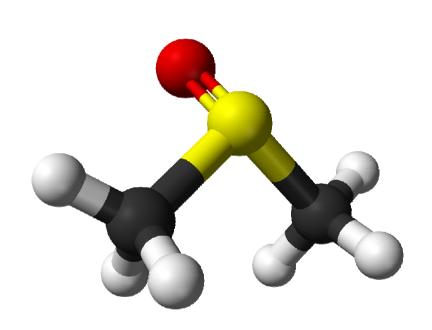
Dichlorométhane - Métabolisme

Source: Gargas et al. 1986

- Mixed Function Oxidase Pathway
- 2 Glutathione Transferase Pathway
- 3 Nucleophile Pathway

- Toxicité à terme
 - Propriétés communes à tous les solvants organiques
 - Irritation
 - Troubles mentaux organiques
 - Exposition répétée à concentrations élevées (> VLEP), pendant périodes prolongées (> 10 ans)
 - Aggravation d'une néphropathie préexistante
 - Sclérodermie systémique
 - Exposition pendant la grossesse associé à excès de risque d'avortement et/ou d'accouchement prématuré.

- Toxicité à terme
 - Effets propres au dichlorométhane
 - Cancérogénicité
 - Rat : tumeurs mammaires (bénignes), sarcomes cervicaux
 - Souris : cancers broncho-pulmonaires, adénocarcinomes hépatocellulaires
 - Homme : études épidémiologiques négatives
 - CIRC : groupe 2B ; UE : catégorie 3
 - Effets sur la reproduction
 - Pas d'effet caractérisé sur la fertilité
 - Pas d'effet tératogène

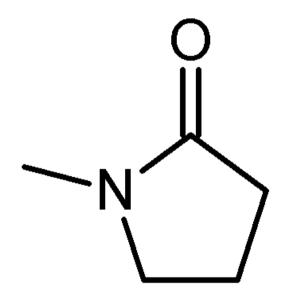

- Sa prédominance dans les décapants chimiques ne devrait pas perdurer
- Projet européen
 - Interdiction de la vente au public et aux professionnels des décapants en contenant plus de 0,1 %
 - Possibilité de dérogations
 - Dans les états de l'UE qui l'acceptent
 - Pour des professionnels agréés
 - A condition qu'ils aient reçu une formation spécifique, sur les dangers, les risques et les mesures à prendre pour s'en protéger

Solvants organiques

- Principales alternatives au dichlorométhane
 - Diméthylsulfoxyde
 - N-méthylpyrrolidone
 - Hydrocarbures
 - Esters dibasiques (adipate, glutarate et succinate de diméthyle)
 - Limonène
 - Alcool benzylique...

Diméthylsulfoxyde

- Propriétés physicochimiques
 - Liquide incolore
 - Odeur légèrement soufrée
 - Peu volatil aux températures habituelles
 - Miscible à l'eau et à la plupart des solvants organiques
 - Bon solvant de la plupart des matières organiques


Diméthylsulfoxyde

- Très bien absorbé
 - Passage cutané ++
- Irritant
 - Solutions > 10 %
- Urticaire de contact
 - Histaminolibérateur
- Dépression du SNC
- Odeur alliacée de l'haleine
- Hyperéosinophilie

- Troubles mentaux organiques
- Expérimentalement
 - Anémie hémolytique
 - Stéatose hépatique
 - Atteinte tubulaire rénale
 - Atteintes cristalliniennes (cataracte et myopie)
- Pas d'effet génotoxique significatif
- Pas de donnée sur cancérogénicité
- Pas d'effet significatif sur la fertilité et le développement foetal

N-Méthylpyrrolidone

- Liquide incolore, discrète odeur aminée
- Miscible à l'eau et à la plupart des solvants organiques
- Dissout un grand nombre de substances minérales et organiques
- Faiblement volatile
- Vapeurs plus lourdes que l'air

N-Méthylpyrrolidone

- Très bien absorbée
 - Passage cutané ++
- Irritation
- Dépression du SNC
- Expérimentalement
 - Dépression médullaire et effet lymphopéniant, à fortes doses (rat)
 - Lésions testiculaires à fortes doses (rat)

- Expérimentalement
 - Cancérogénicité
 - Pas d'effet chez le rat par voie orale ou par inhalation
 - Adénomes et adénocarcinomes hépatocellulaires chez la souris
 - Pas extrapolable à l'homme
 - Effets sur le développement fœtal
 - Foetotoxique, embryotoxique et tératogène dans plusieurs espèces animales
 - UE : catégorie 2

Acides et bases

Acides

- Employés pour le décapage du béton, de l'aluminium, de l'acier
- Éliminent les dépôts organiques, le calcaire et la rouille
- Agents les plus utilisés : acides chlorhydrique, nitrique, phosphorique, fluorhydrique

Bases

- Employées pour détruire les microorganismes déposés sur les revêtements de pierre
- En remplacement du dichlorométhane, pour le décapage des peintures
- Préparations commerciales sont souvent des gels ou des pâtes (épaississants cellulosiques)
- Agents les plus utilisés : hydroxydes de potassium et de sodium
- En perte de vitesse :
 - En l'absence de neutralisation, provoquent des efflorescences favorisant l'effritement, sur les enduits et les revêtements de pierre

Acides et bases

- Toxicité
 - Principalement liée à leur pouvoir corrosif
 - ⇒ Brûlures chimiques
 - Aspect uniforme des lésions produites
 - Érythème
 - Œdème
 - Phlyctènes
 - Nécrose

Les lésions les plus graves ne sont pas toujours les plus douloureuses

Acides et bases

- Gravité des lésions dépend :
 - De l'agent chimique impliqué
 - De sa concentration
 - De la quantité impliquée
 - De l'étendue de la zone contaminée
 - De la durée du temps de contact

- Rapidité de constitution des lésions dépend de l'agent chimique
 - Acides forts:
 - Coagulation immédiate des protéines
 - Bases:
 - Saponification des lipides et liquéfaction des protéines
 - Lésions pénétrantes de constitution lente
 - Acide fluorhydrique :
 - Chélation du calcium et du magnésium
 - Lésions pénétrantes de constitution lente

La décontamination doit être précoce

- Données expérimentales et cliniques :
 - Tant au niveau de la peau que de l'œil
 - Lavage précoce diminue
 - Gravité des lésions, durée de l'hospitalisation, délai de guérison ou de consolidation, fréquence des séquelles
 - Décontamination d'autant plus efficace qu'elle est plus précoce
 - Diminution très rapide de l'efficacité
 - Efficacité au mieux médiocre et risque élevé de lésion grave quand le délai de la décontamination initiale est supérieur à 10 minutes

Le lavage doit être prolongé

- Gravité des lésions produites d'autant plus faible que le lavage est plus long
 - À délai de mise en œuvre constant

 Lavage initial, sur place, doit durer au moins 15-20 minutes

L'eau est le décontaminant de référence

- Diphotérine[®]
 - Solution de décontamination (laboratoire Prévor)
 - Composition inconnue
 - Solution hypertonique d'un composé amphotère et chélateur
 - Dispositif médical
 - Pas de preuve macroscopique ou histologique d'une efficacité supérieure à celle de l'eau
 - Normalisation plus rapide du pH local après attaque basique
 - Mais, cliniquement et histologiquement, pas d'effet supérieur à celui de l'eau
 - Données cliniques pauvres
 - Pas d'étude randomisée
- Pour les projections oculaires
 - Si blépharospasme
 - Anesthésique local pour ouvrir et laver l'œil
 - Soluté isotonique aux larmes (Ringer-lactate) préférable à l'eau
 - Mais ne doit pas retarder la décontamination
 - Bilan ophtalmologique initial indispensable, après lavage
 - Examen à la lampe à fente, test à la fluorescéine...

- Mécanisme des lésions
 - Double
 - lons H⁺
 - Chélation Ca⁺⁺ et Mg⁺⁺
 - Aggravation des lésions pendant 12 heures
- Traitement local associe
 - Décontamination
 - Neutralisation des ions F⁻ par des sels de calcium

- Contamination cutanéovestimentaire
 - Risque d'intoxication systémique
 - Hypocalcémie, hypomagnésémie
 - Et leur complications neurologiques et cardiaques
 - En cas de contamination cutanée
 - De plus de 20 cm² par une solution > 50 %
 - De plus de 2 % de la surface corporelle par une solution moins concentrée
 - ⇒Surveiller ECG, ionogramme, calcémie, magnésémie

- Traitement des projections cutanéo-vestimentaires
 - Déshabillage immédiat
 - Lavage précoce à l'eau
 - Poursuivi 30 minutes
 - En cas de contamination des mains ou des pieds
 - Couper les ongles ras
 - Bain d'au moins 15-20 minutes dans solution d'un sel de calcium
 - Gluconate de calcium 10 %, par exemple
 - Application d'un gel de calcium ou de compresses imbibées d'un sel de calcium
 - Si gel répéter application toutes les 4 heures
 - Si compresses, les maintenir humides
 - En cas de lésions des mains
 - Utiliser gants avec face interne enduite de gel ou pour maintenir compresses imbibées
 - Poursuivre pendant 36-48 heures

- Gels de calcium
 - Préparation Pharmacie centrale hôpitaux de Paris
 - Mais ruptures de stock fréquentes
 - Solutions de remplacement
 - Compresses imbibées de gluconate de calcium 10 %
 - Gel de fabrication artisanale :

3,5 g de gluconate de calcium dans 150 g d'un gel lubrifiant hydrosoluble, type K-Y

- Hexafluorine[®]
 - Préparation commercialisée par le laboratoire Prévor
 - Composition inconnue
 - Solution hypertonique d'un composé amphotère chélateur des ions fluorures
 - Pas d'essai clinique établissant son efficacité
 - Expérimentalement (rat)
 - Pas supérieur à l'eau seule
 - Moins performant que eau + sel de calcium

- Projection oculaire
 - Même traitement que toute projection d'acide
 - Lavage poursuivi 30 minutes
 - Pas d'intérêt démontré de l'utilisation de sels de calcium

Conclusions

- Préparations décapantes contiennent agents dangereux
- Substitutions par préparations moins dangereuses souvent envisageable
 - Dichlorométhane
 - Acide fluorhydrique
- Procédés d'applications et protections utilisés
 - Déterminants pour le risque
 - Quelles que soient les préparations impliquées
- Dangers et risques devraient être connus des maîtres d'œuvres et des maîtres d'ouvrages
 - Évaluation des risques chimiques à formaliser dans le plan général de coordination des chantiers

Conclusions

- Préparations chimiques sur les chantiers
 - Doivent être convenablement étiquetées
 - Ne doivent pas être déconditionnées
- Zones de travail convenablement ventilées
- Information des salariés
 - Sur les dangers et les risques
 - Sur les mesures à prendre pour s'en protéger
 - Sur la conduite à tenir en cas d'accident
- Cantonnements équipés de lavabos, douche, lave-œil
 - Et ne servant pas de zone de stockage des produits employés sur le chantier
- Recommandations établies en commun par les professionnels et les médecins du travail du BTP seraient bienvenues.